
1

Coding and Data Compression

Lec. 1

Introduction

Data compression is the process of converting an input data stream (the source

stream or the original raw data) into another data stream (the output, the bitstream,

or the compressed stream) that has a smaller size. A stream can be a file, a buffer

in memory, or individual bits sent on a communications channel.

The decades of the 1980s and 1990s saw an exponential decrease in the cost of

digital storage. There seems to be no need to compress data when it can be stored

inexpensively in its raw format, yet the same two decades have also experienced

rapid progress in the development and applications of data compression techniques

and algorithms. The following paragraphs try to explain this apparent paradox.

 Many like to accumulate data and hate to throw anything away. No matter how

big a storage device one has. Data compression is useful for this.

 As storage devices get bigger and cheaper, it becomes possible to create, store,

and transmit larger and larger data files. In the old days of computing, most

files were text or executable programs and were therefore small. No one tried

to create and process other types of data simply because there was no room in

the computer. In the 1970s, with the advent of semiconductor memories and

floppy disks, still images, which require bigger files, became popular. These

were followed by audio and video files, which require even bigger files.

 We hate to wait for data transfers. When sitting at the computer, waiting for a

Web page to come in or for a file to download, we naturally feel that anything

longer than a few seconds is a long time to wait. Compressing data before it is

transmitted is therefore a natural solution.

 CPU speeds and storage capacities have increased dramatically in the last two

decades, but the speed of mechanical components (and therefore the speed of

2

disk input/output) has increased by a much smaller factor. Thus, it makes sense

to store data in compressed form, even if plenty of storage space is still

available on a disk drive. Compare the following scenarios: (1) A large

program resides on a disk. It is read into memory and is executed. (2) The same

program is stored on the disk in compressed form. It is read into memory,

decompressed, and executed. It may come as a surprise to learn that the latter

case is faster in spite of the extra CPU work involved in decompressing the

program. This is because of the huge disparity between the speeds of the CPU

and the mechanical components of the disk drive.

 A similar situation exists with regard to digital communications. Speeds of

communications channels, both wired and wireless, are increasing steadily but

not dramatically. It therefore makes sense to compress data sent on telephone

lines between fax machines, data sent between cellular telephones, and data

(such as web pages and television signals) sent to and from satellites.

Advantages/Disadvantages of Compression

Compression of files offer many advantages. When compressed, the quantity of

bits used to store the information is reduced. Files that are smaller in size will

result in shorter transmission times when they are transferred on the Internet.

Compressed files also take up less storage space. File compression can zip up

several small files into a single file for more convenient email transmission.

As compression is a mathematically intense process, it may be a time consuming

process, especially when there is a large number of files involved. Some

compression algorithms also offer varying levels of compression, with the higher

levels achieving a smaller file size but taking up an even longer amount of

compression time. It is a system intensive process that takes up valuable resources

that can sometimes result in “Out of Memory” errors. With so many compression

3

algorithm variants, a user downloading a compressed file may not have the

necessary program to un-compress it.

Some transmission protocols may include optional compression built-in (e.g. FTP

has a MODE-Z compression option), so that taking time to compress data by

another process before transmission may negate some of the advantages of using

such an option in the protocol (because what is eventually submitted for

transmission to/by the protocol is probably now not very further-compressible at

all, and may waste time while the protocol tries and fails to achieve more

compression). It is distinctly possible that ‘external’ compression beforehand is

more efficient these days, and that any compression option in the protocol should

probably be deprecated. However, it is not beyond the bounds of possibility that

the built-in compression actually achieves faster overall results, but possibly with

larger compressed files, or vice versa. Experimentation should be employed to

ascertain which applies, versus which factor is most important to the user.

The field of data compression is often called source coding. We imagine that the

input symbols (such as bits, ASCII codes, bytes, audio samples, or pixel values)

are emitted by a certain information source and have to be coded before being sent

to their destination.

Data compression has come of age in the last 20 years. However, the need for

compressing data has been felt in the past, even before the advent of computers, as

the following quotation suggests:

I have made this letter longer than usual

because I lack the time to make it shorter.

—Blaise Pascal

There are many known methods for data compression. They are based on different

ideas, are suitable for different types of data, and produce different results, but they

are all based on the same principle, namely they compress data by removing

4

redundancy from the original data in the source file. Any nonrandom data has

some structure, and this structure can be exploited to achieve a smaller

representation of the data, a representation where no structure is discernible. The

terms redundancy and structure are used in the professional literature, as well as

smoothness, coherence, and correlation; they all refer to the same thing. Thus,

redundancy is a key concept in any discussion of data compression.

